Rational Spectral Collocation Method for a Coupled System of Singularly Perturbed Boundary Value Problems

نویسندگان

  • Suqin Chen
  • Yingwei Wang
  • Xionghua Wu
چکیده

A novel collocation method for a coupled system of singularly perturbed linear equations is presented. This method is based on rational spectral collocation method in barycentric form with sinh transform. By sinh transform, the original Chebyshev points are mapped into the transformed ones clustered near the singular points of the solution. The results from asymptotic analysis about the singularity solution are employed to determine the parameters in this sinh transform. Numerical experiments are carried out to demonstrate the high accuracy and efficiency of our method. Mathematics subject classification: 65L10, 65M70.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid method for singularly perturbed delay boundary value problems exhibiting a right boundary layer

The aim of this paper is to present a numerical method for singularly perturbed convection-diffusion problems with a delay. The method is a combination of the asymptotic expansion technique and the reproducing kernel method (RKM). First an asymptotic expansion for the solution of the given singularly perturbed delayed boundary value problem is constructed. Then the reduced regular delayed diffe...

متن کامل

A rational spectral collocation method for solving a class of parameterized singular perturbation problems

A new kind of numerical method based on rational spectral collocation with the sinh transformation is presented for solving parameterized singularly perturbed two-point boundary value problems with one boundary layer. By means of the sinh transformation, the original Chebyshev points are mapped onto the transformed ones clustered near the singular points of the problem. The results from asympto...

متن کامل

Numerical method for a system of second order singularly perturbed turning point problems

In this paper, a parameter uniform numerical method based on Shishkin mesh is suggested to solve a system of second order singularly perturbed differential equations with a turning point exhibiting boundary layers. It is assumed that both equations have a turning point at the same point. An appropriate piecewise uniform mesh is considered and a classical finite difference scheme is applied on t...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

Numerical method for singularly perturbed fourth order ordinary differential equations of convection-diffusion type

In this paper, we have proposed a numerical method for singularly perturbed  fourth order ordinary differential equations of convection-diffusion type. The numerical method combines boundary value technique, asymptotic expansion approximation, shooting method and  finite difference method. In order to get a numerical solution for the derivative of the solution, the given interval is divided  in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011